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Abstract—Thirty study participants playtested an innocent-
looking “escape room” game in virtual reality (VR). Behind the
scenes, an adversarial program had accurately inferred over 25
personal data attributes, from anthropometrics like height and
wingspan to demographics like age and gender, within just a few
minutes of gameplay. As notoriously data-hungry companies be-
come increasingly involved in VR development, this experimental
scenario may soon represent a typical VR user experience. While
virtual telepresence applications (and the so-called “metaverse”)
have recently received increased attention and investment from
major tech firms, these environments remain relatively under-
studied from a security and privacy standpoint. In this work,
we illustrate how VR attackers can covertly ascertain dozens
of personal data attributes from seemingly-anonymous users of
popular metaverse applications like VRChat. These attackers can
be as simple as other VR users without special privilege, and the
potential scale and scope of this data collection far exceed what is
feasible within traditional mobile and web applications. We aim
to shed light on the unique privacy risks of the metaverse, and
provide the first holistic framework for understanding intrusive
data harvesting attacks in these emerging VR ecosystems.

I. INTRODUCTION

Through the fog of rapidly shifting consumer preferences
for internet technologies, one clear trend has stood the test
of time: with each new and improved medium for accessing
the web comes a new and improved method for harvesting
personal user data. As these technologies become more im-
mersive and tightly integrated with our daily lives, so too do
the corresponding intrusive attacks on user privacy.

In the first era of the world wide web, users primarily
accessed information through static websites with limited
opportunity for data-revealing interaction. The emergence of
social media platforms in the early 2000s quickly changed
this paradigm, generating a torrent of data on user behavior.
Third-party (tracking) cookies that can uniquely identify and
follow individuals [10] around the web allowed this data to be
deployed for everything from surveillance advertisement [11]
to pushing political agendas [55].

In the past decade, users shifted to accessing the web
primarily via their mobile phones (92.1% as of 2022 [69]),
simultaneously introducing a suite of newly-extractable data
attributes like audio, video, and geolocation. Next, the wave
of wearable devices such as smart watches added critically
sensitive data like biometrics and health information into the
mix [74]. Most recently, virtual home assistants have made

*Equal contribution.

possible pernicious intrusions into users’ most private activi-
ties [15]. Overall, the tendency is clear: each new technology
has gradually expanded the scope of data attributes accessible
to would-be attackers.

Virtual reality (VR) is well positioned to become a natural
continuation of this trend. While VR devices have been around
in some form since well before the internet [2], the true ambi-
tion of major corporations to turn these devices into massively-
connected social “metaverse” platforms has only recently come
to light [51], [63], [71]. These platforms, by their very nature,
turn every single gaze, movement, and utterance of a user into a
stream of data, instantaneously broadcast to other users around
the world in the name of facilitating real-time interaction.

This paper aims to shed light on the unprecedented privacy
risks of the metaverse by providing the first comprehensive
security and privacy framework for VR environments. We
have identified over 25 examples of private data attributes
that attackers can covertly harvest from VR users, which we
experimentally demonstrate in our 30-person user study. Some
of these attributes would be difficult, if not impossible, to
observe within traditional mobile and web applications. Others
mirror attacks seen elsewhere, but are demonstrated for the first
time to be feasibly observable within VR. Moreover, the sheer
breadth of private attribute classes revealed by VR users has
scarcely been seen in other environments. We hope our results
increase broad awareness of privacy concerns within VR and
compel privacy practitioners to examine the challenges and
solutions that lie at the intersection of privacy and the emerging
VR-enhanced social internet.

The main contributions of our study are:

1) We provide the first comprehensive framework of virtual
reality threat models, data sources, observable attribute
classes (§II), and systematic privacy attacks (§III).

2) With our open-source VR demo [52], we illustrate
how malicious game developers can design seemingly-
innocuous VR environments that trick users into revealing
personal information through their behavior (§IV).

3) We experimentally demonstrate how an attacker can
covertly harvest from VR users over 25 unique data
attributes, many of which are infeasible to obtain through
traditional mobile and web applications (§V-A–V-D).

4) We further show that these VR-specific attribute sets
are sufficient to accurately infer the demographics (age,
gender, ethnicity, etc.) of an “anonymous” user (§V-E).
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Data Sources Observable Attribute Classes

Attacker Type Raw Sensor
Data

Processed
Telemetry

Rendering Pipeline
& Host System APIs

Networked
Telemetry

Presented
Telemetry Device Network Geospatial Audio Behavior

Privileged Attacker I ! ! ! ! ! ! !

Privileged Attacker II ! ! ! ! ! !* ! !

Privileged Attacker III ! ! ! !* !* !

Non-Privileged Attacker ! !* !* !
*Observable only in weaker filtered/preprocessed format

TABLE I: Virtual reality threat actor capabilities.

II. VR THREAT MODEL

This section provides a holistic framework for attacker
types and vulnerable data attributes in the context of VR,
thereby framing the privacy attacks introduced in section III.
First, we describe a typical information flow for a VR telep-
resence application. Subsequently, we consider the types of
parties (“attackers”) having access to data sources associated
with a VR device. Finally, we identify the attribute classes
observable by the attackers and their potential privacy risks.
In the context of this study, we consider a state of privacy as the
lack of a breach of sensitive attributes of any individual [85].

A. VR Information Flow

Users can download various games and applications from
the app store their VR device’s manufacturer provides (e.g.,
Oculus Store). One increasingly popular category of VR ap-
plication is virtual telepresence (e.g., VRChat [24]), whereby
users around the world interact with each other in real-time
within a 3D virtual world (or ”metaverse”).

The typical information flow for such an application, as
depicted in Fig. 1, is as follows: The VR device processes
raw sensor data into useful telemetry, which it provides to
the application via an API (Step 1A). The application uses
this data to provide visual stimuli (frames) to the user via a
graphics rendering pipeline, which the application completely
controls (Step 1B). If the application involves interactions with
other users, the client-side VR application streams processed
telemetry data to an external server via a network to facilitate
such interactions (Step 2). The server then relays this data to
other users for their devices to render (Step 3).

The exact sensor readings available vary significantly de-
pending on the device, but processed telemetry generally
includes at least the position and orientation of the headset and
controllers, with more data available on systems supporting
advanced features such as eye tracking or full-body tracking.

ServerVR Device Application Other Users

Rendered 
Frames

(1B)

(1A)
Processed 
Telemetry

(2)
Networked 
Telemetry

(3)
Presented 
Telemetry

Privileged 
Attacker I

Privileged 
Attacker II

Privileged 
Attacker III

Non-Privileged 
Attacker

Host System Host Network

Fig. 1: Virtual reality information flow and threat model.

B. VR Attackers

Given the data flow of Fig. 1, we consider four types of
VR privacy attackers which correspond to four distinct entities
typically associated with VR data processing. We summarize
the capabilities of each attacker in Table I. The goal of each
attacker is to learn as much information as possible about the
target user employing only the information naturally presented
to the attacker via standard APIs (i.e., without using malware,
side channels, or privilege escalation). We based this attack
model on our experience with the Oculus and Steam VR
ecosystems, but the exact capabilities of each attacker may vary
depending on the APIs made available by different platforms.

Privileged Attacker I (the “Hardware Adversary”)

The first privileged attacker represents the party controlling
the firmware of a target user’s VR device. This attacker has
access to raw sensor data from the VR device, including
spatial telemetry, audio/visual streams, and device specifica-
tions. There is a bi-directional information flow between the
device and the local application: the device provides processed
telemetry to a running application, which the attacker can
manipulate arbitrarily (1A), and the device receives a stream
of audio/visual stimuli from the application, which the attacker
can manipulate arbitrarily before presenting to the user (1B).
However, this attacker cannot read or manipulate the network
communications of the application.

Privileged Attacker II (the “Client Adversary”)

Our second privileged attacker represents the developer of
the client-side VR application running on the target user’s
device. This attacker has full access to the APIs provided by
the VR device and host system (1A) and controls a graphics
rendering pipeline which the attacker can use to provide visual
stimuli to the target user (1B). In the case of a multiplayer
application, it can process this data arbitrarily before streaming
it to an external server (2).

Privileged Attacker III (the “Server Adversary”)

Our third privileged attacker represents the entity control-
ling the external server used to facilitate multiplayer function-
ality for the application running on the target user’s device.
This entity may, in practice, be the same party developing the
client-side application (in the case of a “public server”) or an
entirely separate entity (a “private server”). Thus, Privileged
Attackers II and III could often be controlled by the same
entity. This attacker receives a stream of telemetry data from
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the client-side application (2), which it can process arbitrarily
before relaying such data to one or more other client devices
(3). The data available to this attacker is generally weaker
than the previous attacker; for example, a client application
may receive tracking data at 120 Hz and broadcast it at
30 Hz instead [81], and audio signals are typically heavily
compressed before being broadcast.

Non-Privileged Attacker (the “User Adversary”).

A non-privileged attacker represents a second end-user of
the same multiplayer application as the target user. The attacker
receives low-fidelity telemetry and audio streams from the
external server (3), which it uses to render a representation
of the target user. They can also interact with the target user
as permitted by the application, such as to provide stimuli and
observe the target’s response. While the audio and telemetry
streams are likely highly processed and filtered by this point,
they are typically still sufficient to observe the general behavior
of the target user.

The user study in this paper aims to show the feasibility
of each attack model. We thus minimized interaction with
the participants to closely emulate a realistic attack scenario.
Moreover, participants reported not knowing exactly which
data attributes we collected during the experiments, and thus
could not directly cooperate with any of the attacks. However,
insofar as the attacker’s capability correlates with the quality
of the received telemetry, our high-fidelity VR setups provided
favorable conditions for demonstrating these attacks.

C. Observable Attribute Classes

We now shift our discussion to the broad classes of private
user data observable by each of the attackers using only their
corresponding data sources. Fig. 2 shows an overview of the
VR data sources we consider in this paper. We categorize the
collected attributes into primary (captured directly from a data
source), secondary (derived deterministically from primary
attributes), and inferred (derived from primary and secondary
attributes using machine learning).

Geospatial Telemetry. The first major source of user data is
directly from geospatial telemetry (namely, the position and
orientation of the VR headset and controllers over time). Such
data is useful for revealing a user’s anthropometric measure-
ments, such as height and wingspan. While all attackers can
observe telemetry to some extent, less privileged attackers are
likely to experience degraded precision when estimating these
metrics due to the use of intermediate filtering and processing.
For example, we found that privileged attackers I and II can
determine a user’s interpupillary distance (IPD) from telemetry
to within 0.1mm, while IPD is difficult for privileged attackers
III and non-privileged attackers to ascertain.

Device Specifications. Another class of attack aims to use
VR-specific heuristics to determine information about the VR
device and the user’s host computer. Of course, privileged
attackers I and II can directly query device specifications
such as resolution and field of view (FOV) from available
system APIs; however, we will later demonstrate how even
non-privileged attackers can attempt to learn some of this
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Fig. 2: Taxonomy of VR-derived data attributes.

information by creating puzzles that only users of high-fidelity
devices can feasibly solve. Determining the specifications of
a user’s device can reveal personal information about the
end-users themselves; for instance, the cost of commercially-
available VR setups spans at least two orders of magnitude;
thus, determining the exact hardware of a target user may
reveal their level of income/wealth.

Network Observations. An additional source of information
about a target user is the observation of network characteristics.
While not necessarily unique to virtual reality, attacks that
leverage network observations to geolocate users are a natural
fit for virtual telepresence applications, which often facilitate
the use of multiple game servers to minimize perceived la-
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tency [81]. Thus, privileged attackers II and III can efficiently
capitalize on such attacks.

Behavioral Observations. Behavioral observations are a
fourth key source of private information enabled by virtual
reality applications, and observing how users react to carefully
chosen stimuli can reveal a wide variety of personal infor-
mation. Attacks based on observing user behavior typically
require less privilege than other types of attacks discussed
herein, with even non-privileged attackers typically receiving
enough information to observe general user interactions. We
also include listening to user vocalizations in this category
(audio), although one could also consider it a category.

III. VR PRIVACY ATTACKS

A. Biometrics

Fig. 3: Measuring user anthropometrics from telemetry.

Continuous Anthropometrics. Fig. 3 illustrates how attackers
can directly measure a user’s anthropometrics from VR teleme-
try. While basic headset-and-controller setups are sufficient
to reveal height, arm lengths, and wingspan, more advanced
full-body tracking systems can yield additional anthropometric
measurements. Additionally, measuring the distance between
the virtual cameras used to render an image for each eye can
also reveal a user’s interpupillary distance (IPD).

Fig. 4: Estimating handedness from behavior.

Binary Anthropometrics. An attacker can collect binary
anthropometrics, which include characteristics such as longer-
arm and dominant handedness, both directly from telemetry
(e.g., “which hand moves more?”) and from behavior (e.g.,
“which hand is used to press a button?”). Fig. 4 illustrates
an example process of determining a user’s handedness. The
handedness attack is inspired, in part, by a similar method used
previously in smartphones [5].

Fig. 5: VR puzzle revealing deuteranopia.

Vision. VR attackers can carefully construct interactive ele-
ments that secretly reveal aspects of a player’s visual acuity,
such as nearsightedness, farsightedness, or color blindness. For
example, Fig. 5 shows a puzzle element of our VR game that
appears innocuous to most users but is not solvable by users
with red-green color blindness (deuteranopia).
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Fig. 6: Measurement of physical fitness.

Fitness. An attacker could also use behavioral and telemetric
measurements to asses a subject’s degree of physical fitness.
Fig. 6 illustrates a virtual room designed to elicit physical
activity and shows the resulting metric of physical fitness
measurable on a headset position (y-coordinate) vs. time graph.
We observed that a squat depth of less than 25% of height
corresponded to low physical fitness. An extreme lack of
fitness may reveal a participant’s age or physical disabilities.

Fig. 7: VR puzzle measuring reaction time.

Reaction Time. Fig. 7 shows a VR environment constructed
to reveal the participant’s reaction time by measuring the
time interval between a visual stimulus and motor response.
Reaction time is strongly correlated with age [84].
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B. Environment
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Fig. 8: Estimating room size from geospatial telemetry.

Room Size. Fig. 8 shows how an attacker could estimate the
size of a user’s physical environment by tracking their virtual
movements. We designed virtual environments that contain
interactive elements which encourage the participant to explore
the boundaries of their physical environment.

Fig. 9: Estimating user location from network latency.

Geolocation. Fig. 9 shows how observing the round-trip delay
between a client device and multiple game servers (proximity)
can reveal an end user’s location (locality) via multilateration.
A non-privileged attacker could use the round trip delay of
audio signals as an approximate measure of latency.

C. Device Specifications
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Fig. 10: Methods of attaining VR device metrics.

VR Device. We assume that privileged attackers I and II have
intrinsic knowledge of the VR device specifications via direct

API interaction. Fig. 10a shows how privileged attacker III
may use telemetry throughput to determine the refresh rate of
a target user’s head-mounted display (HMD) and controller
tracking. Further, Fig. 10b shows how even a non-privileged
attacker can construct a virtual environment that users perceive
differently depending on their devices’ refresh rate (see puzzle
15 in Appendix A). Determining several specifications such as
refresh rate, resolution, and field of view, is sufficient to reveal
the exact make and model of the VR device.

Host Device. Privileged attackers can also embed a variety
of standardized benchmarks in their source code to assess the
quality of the target user’s host device (gaming computer).
An attacker can use metrics such as CPU power, GPU power,
and network bandwidth to reveal the age and price tier of the
system and, thus, potentially the wealth of the target user.

(a) abstraction (b) attention

(c) naming (d) orientation

Fig. 11: Methods of measuring cognitive acuity.

D. Acuity (MoCA)

A number of standardized cognitive, diagnostic, and ap-
titude tests can be adapted for VR environments. Fig. 11
illustrates VR environments designed to covertly asses four
categories of the Montreal Cognitive Assessment (MoCA): ab-
straction (11a), attention (11b), naming (11c), and orientation
(11d).

E. Demographics

Fig. 12: Determining language from user behavior.

Language. There are a number of ways to ascertain a user’s
spoken language(s) in VR, including via speech recognition.
Fig. 12 illustrates how a non-privileged attacker can observe
a user’s direction of gaze while solving a puzzle to reveal the
languages they speak.
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Fig. 13: Virtual office building hosting the puzzle rooms.

Vocal Characteristics. Listening to the voice of a user may
reveal key demographic attributes such as age, gender, and eth-
nicity [6], [18]. Shared VR environments with voice streaming
provide a strong opportunity to capitalize upon such a feature,
as attackers can cue target users to speak certain words or
phrases that reveal more information.

Inferred Attributes. While most demographic attributes can-
not be observed directly from VR data, an attacker could
often accurately infer them from primary data attributes. For
example, height, wingspan, and IPD correlate strongly with
gender, while eyesight, reaction time, and fitness correlate with
age.

IV. EXPERIMENTAL DESIGN

The question we aim to answer is whether, and to what
degree, an attacker can use data collected from consumer-grade
VR devices to accurately extract and infer users’ private infor-
mation. This section details the experimental design, technical
setup, and protocol used to answer this important question. We
begun by identifying a number of privacy-sensitive variables
we believed to be uniquely accessible within VR. We designed
and implemented systematic methods to collect and analyze
these variables from within VR applications, as summarized
in section III. To test the efficacy of these attacks, we designed
an ”escape room”-style VR game themed as an office building
(see Fig. 13). We then disguised the attacks as a set of puzzles
within the game, which users were highly motivated to solve to
the best of their ability in order to unlock a sequence of doors
and win the game. We describe the exact puzzles in detail in
Appendix A. We endeavored to design the experiment such that
it did not bluntly reveal the ulterior goal (namely facilitating
the measurement of the variables in Fig. 2), thereby illustrating
how other VR applications could also accomplish the same
goal covertly. To this end, we also added innocuous (i.e.,
“noisy”) rooms which did not necessarily collect meaningful
personal information, but instead served to camouflage the
data-harvesting puzzles.
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Area

1.5m x 1.5m

T4 C1

C3

Microphone

Umbrella 
Lights

Soft-box 
Lights

Cameras

Tracking 
Stations

Fig. 14: VR laboratory room layout.

A. Setup and Protocol

We recruited 30 individuals for the experiments (6 female
and 24 male, 18–64 years old, with x̄ = 27.3 yrs and
s = 11.1 yrs). The recruiting channels we had access to were
predominantly department-specific; as such, the demographics
of our participants mirror those of our own department within
our institution.

After completing a thorough informed consent and orien-
tation process, we helped the participants don a VR headset
(HTC Vive, Vive Pro 2, or Oculus Quest 2) and its hand-
held controllers (Vive Controllers, Valve Index Controllers,
or Oculus Quest Controllers, respectively), after which the
participant proceeded to play the VR game (see the laboratory
room layout in Fig. 14 and the primary VR setup in Fig. 15).
Each headset was paired with a gaming computer sufficiently
powerful to run it at full fidelity; the main experimental setup

We tested three devices to determine if there were any noteworthy differ-
ences, which we did not observe other than in IPD (see §V-A).
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had 64 GB of RAM, an AMD Ryzen 9 5950X CPU, and an
Nvidia RTX 3090 GPU. Finally, the participants completed
a post-game survey to collect the “ground truth” values for
attributes of interest.

Each experiment lasted approximately 10–20 minutes
within VR, plus around 10 minutes for completing the survey.
Throughout the experiments, we minimized the interactions
with the participants and ensured their safety by intervening
when they approached a wall in the room. The experiments
remained the same for all participants; we did not alter the
game play-through or logic. The game collected the targeted
data points in CSV format during the play-through. Further-
more, the researchers manually annotated data points for data
collection that required game development beyond what is
reasonable for this study, e.g., automating voice recognition
to register the escape room “passwords” (solutions) the par-
ticipants articulated aloud. The researchers pressed keys on a
keyboard to trigger animations in the virtual environment and
teleport the player between rooms. These elements could be
automated in a production-ready VR game.

Fig. 15: Experimental setup.

Once the experiment ended, the participants filled out a
form with their ground truth, which we used to validate the
accuracy of the proposed privacy attacks. To collect the ground
truth unknown to the participants themselves, we performed

onsite measurements, e.g., we annotated the VR device and
VR-room area, tested their reaction time with a desktop app,
and measured their height and wingspan with a metric tape.
Furthermore, knowing that researchers have studied the use
of cognitive assessments in the diagnosis of attention disor-
ders [60], autism [25], PTSD [40], and dementia [83], we chose
the Montreal cognitive assessment (MoCA) [27] as a simple
example of what advanced, immersive VR games could hide
in their play-throughs. We randomized the order of the VR
experiment and paper MoCA test (with half the participants
taking the MoCA before and with the other half after the
experiment) to neutralize potential biases in either direction.
Once we collected the ground truth, we ran our analysis scripts
(privacy attacks) over the collected data to compile and infer
data points, which we compared to the ground truth to assess
the attacks’ accuracy.

B. Ethical considerations

We identified three primary ethical risks in our protocol:
(i) the risk of discomfort using a VR device, (ii) the risk
of a confidentiality breach of participant data, and (iii) the
risk that participants might not have wished to disclose certain
information about themselves during the course of the study.

To address the first risk (i), we used high-fidelity VR
devices and appropriately powerful gaming computers for all
participants, together capable of consistently providing 120
frames per second, well above the minimum specifications
recommended to mitigate the risk of VR sickness [67]. We
designed our VR game to avoid distressing elements such as
horror, claustrophobia, or flickering/strobing lights. Further-
more, a researcher was present to ensure participants did not
collide with real-world objects during each play-through.

To address the second risk (ii), we anonymized all collected
data using random alphanumeric codes that we could not
reasonably trace back to a participant’s identity. Moreover, we
avoided collecting any highly-sensitive data that could poten-
tially damage participants in a breach. Lastly, we normalized
biometric measurements on a scale of 0 to 1 to avoid revealing
exact measurements in this paper (e.g., in Fig. 16).

To address the third risk (iii), we made sure participants
clearly understood the nature of the study. We emphasize
that this is not a deception study. Our claims about the non-
obviousness of the presented attacks should not be construed
to imply that participants were unaware that their data was
being collected during the study. Participants were informed
that their data was being collected, including a description of
the categories of data being observed. After completing the
VR portion of the study, participants were made aware of the
exact attributes being collected. They were explicitly given the
opportunity to withdraw consent without penalty at any point
in the process, including after having detailed knowledge of
the data attributes involved, in which case their data would not
have been included in the results.

In light of these considerations, the study was deemed a
minimal-risk behavioral intervention and was granted an IRB
exempt certification under 45 C.F.R. § 46.104(d)(3) by an
OHRP-registered institutional review board.
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Attribute Type / Source Precision Accuracy Attackers

Height Primary
Telemetry 1 cm 70% within 5 cm

100% within 7 cm
Privileged I-III
Non-Privileged*

Longer Arm Primary
Telemetry boolean 64% for ≥ 1 difference

100% for ≥ 3 cm difference
Privileged I-III
Non-Privileged*

Interpupillary Distance Primary
Telemetry 0.1 mm 96% within 0.5 mm (Vive Pro 2)

87% within 0.5 mm (All Devices) Privileged I-II

Wingspan Secondary
Telemetry 1 cm 86% within 7 cm

100% within 12 cm
Privileged I-III
Non-Privileged*

Room Size Secondary
Telemetry 1 m2 78% within 2 m2

97% within 3 m2
Privileged I-III
Non-Privileged*

Geolocation Primary
Network 100 km 50% within 400 km

90% within 500 km Privileged II-III

HMD Refresh Rate Primary
Device 1 Hz 100% within 3 Hz (Privileged Attacker)

81% wtihin 60 Hz (Unprivileged Attacker)

Privileged I-II
Privileged III*
Non-Privileged*

Controller Tracking Rate Primary
Device 1 Hz 100% within 2.5 Hz

Privileged I-II
Privileged III*
Non-Privileged*

Device Resolution (MP) Primary
Device 0.1 MP 100% within 0.1 MP Privileged I-II

Device FOV Primary
Device 10° 100% within 10°

Privileged I-II
Privileged III*
Non-Privileged*

Computational Power Primary
Device

0.1 GHz
10 Mh/s

CPU: 100% within 0.4 GHz
GPU: 100% within 20 Mh/s Privileged I-II

VR Device Secondary
Device N/A 100%

Privileged I-III
Non-Privileged*

Handedness Primary
Behavior boolean 97%† Privileged I-III

Non-Privileged

Eyesight Primary
Behavior boolean 70% (Hyperopia)

81% (Myopia)
Privileged I-III
Non-Privileged

Color Blindness Primary
Behavior boolean 100%

Privileged I-III
Non-Privileged

Languages Primary
Behavior boolean 88%

Privileged I-III
Non-Privileged

Physical Fitness Primary
Behavior boolean 90%

Privileged I-III
Non-Privileged

Reaction Time Primary
Behavior 17 ms 88%

Privileged I-II
Privileged III*
Non-Privileged*

Acuity (MoCA) Primary
Behavior 1 point

81% within 1 point
90% within 2 points
100% diagnostic accuracy

Privileged I-III
Non-Privileged

Gender Inferred
Classification boolean 100%

Privileged I-III
Non-Privileged

Age Inferred
Regression 1 yr 100% within 1 yr Privileged I-III

Non-Privileged

Ethnicity Inferred
Classification categorical 100%

Privileged I-III
Non-Privileged

Income Inferred
Regression $1k 100% within $25k Privileged I-III

Non-Privileged

Disability Status‡ Inferred
Classification boolean 100%

Privileged I-III
Non-Privileged

* With degraded accuracy. † Only 1/30 were left-handed. ‡ No physical disabilities observed, see §V-E.

TABLE II: Selected attributes collected and analyzed during the experiment.
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Fig. 16: Actual and predicted user anthropometrics.

V. RESULTS

In this section, we present the empirical effectiveness of the
privacy attacks introduced in § III, as summarized in Table II.

A. Biometrics

Continuous Anthropometrics. Fig. 16 shows (scaled) actual
and predicted values for height (R2 = 0.79), wingspan (R2 =
0.67), and interpupillary distance (IPD) (R2 = 0.86). IPD
measurements were most accurate on the Vive Pro 2, with
R2 = 0.99 when excluding other devices. In general, we could
accurately determine these three metrics for most users from
just a few seconds of telemetry. We were not, however, able to
accurately predict the individual lengths of the left and right
arms (R2 = 0.01 and R2 = 0.08 respectively), due to the lack
of a reliable center point from which to measure.

Binary Anthropometrics. Although absolute arm lengths
were not discernible, relative lengths were accurate enough
that we could usually identify which of the participant’s arms
was longer. We observed increasing accuracy for participants
with greater differences in length, reaching 100% accuracy for
the 13% of participants with a difference of at least 3 cm.
We believe that handedness can also be determined accurately
from certain behavioral observations; we note, however, that
97% of our participants were right-handed.

Vision. Our vision tests achieved diagnostic accuracies for
hyperopia (farsightedness), myopia (nearsightedness), and
deuteranopia (red-green color blindness) of 70%, 81%, and
100% respectively. The overall accuracy of detecting a visual
deficiency was 81%, in part because some users of contact
lenses could not remove their contacts for the experiment.

Fitness. Using squat depth as a correlate of physical fitness
discriminated “low” fitness with an accuracy of 90%; our tests
were not able to differentiate between “moderate” and “high”
fitness.

Reaction Time. We measured reaction time to a precision of
one recorded frame (16.6 ms). We were able to detect whether
a participant’s reaction time was above or below 250 ms (the
approximate median reaction time) with an accuracy of 88%.

B. Environment

Room Size. The length and width of each of three testing
rooms was determined to within 1.0 m with accuracies of

90% and 100% respectively. This allowed true room area to
be found within 3 m2 in 97% of trials. Taking the average
estimated area for each tested room vs. the true accessible
room area yields R2 = 0.97.

Geolocation. Using the server latency multilateration (hyper-
bolic positioning) technique for geolocation yielded a mean
longitudinal error of 2.58° and mean latitudinal error of 2.50°
across three tested locations. This was sufficient to locate the
test subject to within 500 km in 94% of cases, and within the
correct U.S. state in 100% of cases.

C. Device Specifications

VR Device. We found that privileged attackers could determine
various VR Device specifications (namely, display refresh rate,
display resolution, field of view, and tracking rate) with 100%
accuracy. This allows privileged attackers to determine the type
of VR device with 100% accuracy. We also found that non-
privileged attackers could determine the refresh rate to within
30 Hz with an accuracy of 38% and to within 60 Hz with an
accuracy of 81%; however, this was not sufficient to accurately
determine the type of device.

Host Device. We found that an attacker benchmarking host
device specifications can determine GPU power with 100%
accuracy to within 20 Mh/s (daggerhashimoto) and CPU clock
speed to within 0.4 GHz, allowing them to estimate the price
tier of the host device.

D. Acuity (MoCA)

Table III summarizes the numerical (continuous, i.e., the
score of each category) and diagnostic (binary, i.e., passing
or failing a category) accuracy of the Montreal Cognitive
Assessment (MoCA) we conducted in the VR experiments. We
achieved a diagnostic accuracy of 90% or greater for 5 of the 7
scored MoCA categories (excluding visuospatial/executive and
delayed recall), with an overall diagnostic accuracy of 100%.
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MoCA
Category

Accuracy
(Numerical)

Accuracy
(Diagnostic)

Executive N/A N/A
Naming 100% 100%
Memory 75% 75%
Serial 7 90% 100%
Attention 88% 100%
Repetition 75% 94%
Language 72% 94%
Abstraction 100% 100%
Recall 53% 84%
Orientation 100% 100%

Overall 81% within 1 point
90% within 2 points 100%

TABLE III: Accuracy of each MoCA category.

E. Demographics

Language. The visual focus method of language determination
identified a spoken language (other than English) with at least
conversational proficiency in 88% of multilingual participants.

Vocal Characteristics. We used existing machine learning
models to determine the gender [6] and ethnicity [18] of
participants from their voice with an accuracy of 97% and 63%
respectively; these accuracy values improved to 100% when
combined with other attributes such as height and wingspan
as described in “Inferred Attributes” below.

Inferred Attributes. We used Azure Automated Machine
Learning [1] to determine the optimal preprocessor, model
type, and input metrics for inferring several demographic at-
tributes. Table IV summarizes the results of this meta-analysis.
Using the identified optimal models, we determined the partici-
pant’s gender, ethnicity, disability status, age (within one year),
and income (within $25, 000) with 100% accuracy across
several Monte Carlo cross-validations. Participants using a VR
device other than their own were excluded from consideration
for the income attribute. In each case, the model far out-
performed any individual attribute; for example, ethnicity was
100% accurate despite its most significant input (voice) being
only 63% accurate on its own.

Attribute (Prediction) Inputs Preprocessing / Model
Gender
(Classification)

Voice, Height, Wingspan,
Interpupillary Distance (IPD)

TruncatedSVDWrapper
SVM

Age
(Regression)

Close Vision, Reaction Time,
Height, Test Duration, Acuity

MaxAbsScaler
ExtremeRandomTrees

Ethnicity
(Classification) Voice, Language, Height StandardScalerWrapper

LightGBM
Income
(Regression)

VR Device, GPU Power,
CPU Power

MaxAbsScaler
XGBoostRegressor

Disabilities
(Classification) Vision, Fitness, Acuity MaxAbsScaler

NaiveBayes

TABLE IV: Inputs and methodology of inferred attributes.

With respect to disability, we did not observe any phys-
ical disabilities in our 30 participants; instead, we expanded
the scope of disabilities to include, for example, visual and
cognitive impairments, for the purposes of this study.

VI. DISCUSSION

We now return to the question of whether an attacker can
use data collected from consumer-grade VR devices to extract
and infer users’ private information accurately. In this study,
we have shown that this is indeed possible, with moderate to
high accuracy values for most of the aggregated and inferred
data points presented in Table II. We found that an attacker
could uniquely and consistently identify a participant among
the pool of 30 within a few minutes of gameplay and based
on as few as two data points: height and wingspan. Moreover,
we have collected more than 25 granular data points, well
above the 15 necessary to uniquely identify every individual
in the United States [61]. While we were required to condense
this data collection into a concise 20-minute experiment for
logistical reasons, real-world attackers could gain increased
accuracy and covertness by aggregating data collected over
much longer periods of time.

In sections III and IV, we argued that a developer could
design VR environments and games to facilitate the covert
collection of targeted data points disguised as normal game
elements. Indeed, after the experiment, all 30 participants
reported not knowing exactly which attributes were being
collected and inferred during the game. Many participants
expressed surprise during both the initial consent process and
the later debrief at the breadth of information that could
be collected within VR, but none expressed particular shock
at the existence of some degree of data harvesting (perhaps
having already grown accustomed to these practices in other
environments).

While for ethical reasons we limited our attacks to rela-
tively benign data points, an attacker could potentially track
and infer additional information about other more critically
sensitive personality traits, like sexual, religious, or political
orientation, educational level, and illnesses, among others, to
enhance practices such as surveillance advertisement [11] or
pushing political agendas [55]. Given how immersive and
emotionally engaging VR environments can be [54], [28],
[82], [38], such practices could become more pernicious and
effective than with current mobile and desktop applications.

Although we use the terms “attack” and “attacker” through-
out this paper, to the best of our knowledge, there is nothing
strictly illegal about the methods described herein. It is there-
fore possible that in the future, many VR users would know-
ingly or unknowingly consent to this form of data collection
via clauses contained in platform terms of service or end-user
license agreements. In fact, major VR device manufacturers
have been observed selling headsets at a loss [58] of up
to $10 billion per year [59], and it is evident that these
corporations will aim to recoup said losses with some form
of after-sales revenue.

Limitations. We would like to note that our sample of par-
ticipants was unfortunately not perfectly representative of the
general population; for example, there were more men than
women (due to the demographics of the department popula-
tion from which we recruited), we had only one left-handed
participant, and none had physical disabilities (but other types
of disabilities were also considered). The majority of our
participants were students. For logistical reasons, we were
unable to tamper with VR device firmware and thus could not
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consider hardware-level attacks in this paper. Therefore, privi-
leged attackers I and II, while different in theory, had identical
capabilities within the scope of our experiment. Furthermore,
we obtained our results through high-fidelity latest-generation
VR devices; as such, they may not be applicable to lower-
fidelity devices. Lastly, the researchers were forced to interact
with participants outside of VR on some occasions, such as to
warn of nearby obstacles. While we did attempt to minimize
such occurrences, these interactions could nevertheless have
biased certain results (particularly behavior).

Future work. Given the early stage of research on privacy
and VR, there are many outstanding questions in this field
for researchers to tackle. Among them is the question of how
developers can design VR games or applications that make pri-
vacy attacks even more stealthy, including by integrating these
attacks into daily tasks in future VR/AR environments. On the
other hand, researchers could also study analysis techniques for
revealing hidden data collection mechanisms (where possible)
to make these attacks harder to achieve. Furthermore, studying
what additional data attributes an attacker could leverage from
data sources we did not consider (including eye tracking and
full-body tracking) will expand our overall awareness of VR-
related vulnerabilities. Additionally, future work dedicated to
how an attacker could not just observe but actually change
users’ opinions will shed light on the implications of future
immersive and impactful metaverse applications. Above all, we
think it most important to study the potential countermeasures
to these VR privacy attacks, such as by adding noise to raw
VR device data without compromising the user experience.

VII. RELATED WORK

Virtual reality (VR) is an interdisciplinary field of research
used in a multitude of contexts such as education [31],
[19], healthcare [73], transportation [45], [22], [35], [44],
work environments [34], [78], productivity [29], [64], and
entertainment [66], [24]. Additionally, new fields open as the
current market trends push VR to become an extension of the
social internet (where security and privacy are critical) in the
form of the so-called “metaverse”. There are many related
works on privacy and the web, e.g., privacy attacks on web
browsers [37], leveraging social media data [49], [20] and
searchable personal information [41], and on internet privacy
policies [33]. There is also research on privacy attacks on
mobile location data [79], smart wearables [26], and across
mobile and desktop browsers and mobile applications [46].
As VR environments become an increasingly prevalent part of
the social internet [51], these attacks may overlap and expose
VR users’ private information.

Regarding related work on VR and privacy specifically,
top searches of studies related to the “metaverse”, or “virtual
reality” and “privacy” in digital libraries such as IEEE [23],
ACM [3], ScienceDirect [68], or Springer Link [70] and
references cited thereof revealed high-level literature reviews
related to privacy in VR [56], [9], [32], [16], [51], [77],
[42], [13], [12]. Notably, O’Brolcháin et al. [56] highlights
the ethical concerns of converging social networks with VR,
and Falchuk et al. [16] qualitatively discusses potential privacy
protections in the metaverse, e.g., producing virtual clones to
mask the authentic user. These works highlight the importance

of addressing privacy in VR, which is a sensitive environment
and may emotionally charge users as VR emulates the real
world [54], [28], [82], [38]. However, these studies lack
technical implementations and practical demonstrations of VR-
specific attacks.

Among technical works in the field of privacy and VR [21],
[80], [43], [48], [38], [47], [72], [39], [8], notable studies
investigate the consequences of traditional security and privacy
attack vectors on VR learning environments, e.g., packet
sniffing, shoulder surfing, or network attacks, and create a
risk assessment framework thereof [21], [80]. Furthermore,
Martinovic et al. [43] study shared similarities to our work’s
goal and method despite studying privacy in brain-computer
interfaces instead of in VR. Moreover, given that eye move-
ment can reveal users’ gender, age, and interest in a scene,
Steil et al. [72] and Ao et al. [39] employed differential privacy
to protect users’ eye-tracking data without significantly com-
promising the utility of heatmaps for inferring, e.g., document
types or reading speed. Other works are less involved, for
instance, claiming privacy preservation by just capturing data
in “short” time frames without a threat model [8]. Aware of
these privacy attacks, Lim et al. [38] created a privacy tutorial
for users to navigate VR safely. Lastly, researchers have
also focused on full-body tracking data in VR environments.
Many works revolve around identifying body motions for user
authentication [50], [57], [65], [36], which led Miller et al. [48]
to investigate the privacy implications in user identification
with VR tracking body movements. However, Miller et al.
and the rest of the literature did not include other critical
VR data such as device specifications, network, and behavioral
observations in combination to identify users.

Overall, we are the first to provide a holistic taxonomy
of VR attackers, data sources, vulnerable attributes, and cor-
responding attacks that practically demonstrate how attackers
may accurately harvest sensitive user information.

VIII. CONCLUSION

In this study, we shed light on the unprecedented privacy
risks of the metaverse by showing how VR can be turned
against its users. Specifically, we provided a comprehensive
security and privacy framework for VR environments that clas-
sifies (i) attackers, (ii) data sources, (iii) vulnerable attributes,
and their corresponding (iv) attacks. We demonstrated the
practicality and accuracy of these attacks by designing and
conducting experiments with 30 participants using consumer-
grade VR devices. The participants played our “escape room”
VR game, which was secretly designed to collect personal
information, like biometrics, demographics, and VR device and
network details, among numerous other data points. The results
demonstrate high information leakage with moderate to high
accuracy values over most identified vulnerable attributes, with
just a handful of these attributes being sufficient to uniquely
identify a user [62], [75], [53], [17], [30], [14], [76], [4].

The alarming accuracy and covertness of these attacks
and the push of data-hungry companies towards metaverse
technologies indicate that data collection and inference prac-
tices in VR environments will soon become more pervasive
in our daily lives. Furthermore, the breadth of possible VR
applications, increasing quality of VR devices, and relative
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simplicity of our demonstration, all suggest that more so-
phisticated attacks with a higher success rate are possible
and perhaps on the horizon. Therefore, we hope our work
encourages other privacy practitioners to advance research at
the intersection of privacy and VR, in particular to propose
countermeasures for new and existing privacy attacks in the
metaverse.
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APPENDIX

This section describes the experiment design in detail.
Our experiment consists of puzzles located in VR rooms that
the participants visit. The puzzles are artifacts that facilitate
collecting privacy-sensitive variables that might not otherwise
be evident. The rooms are themed as a virtual office. Before
initiating the game, we explained to the participants that
they would find the password by solving a puzzle, thereby
“escaping” the room. As developing a full-fledged game with
voice recognition or virtual password pads is out of scope,
the participants spoke the passwords aloud so that the re-
searchers could press a key and “teleport” them to the next
room. We include five “noisy” rooms, i.e., rooms that do not
serve the purpose of facilitating the measurement of sensitive
information but help to mask the rooms that do. Nonetheless,
noisy rooms habituate the player to the game mechanics, e.g.,
looking around the room or immersing the player further in
the game. If the player gets stuck in one room, we press a key
to teleport the participant to the next room. We request the
users to remove their glasses or contact lenses for puzzles 23
and 24, measuring eyesight. While influencing players in such

a way is not possible in a real scenario, these puzzles could at
least identify the players who do not have good eyesight, i.e.,
they do not wear glasses/contacts when playing.

Puzzle 1: The first room introduces the player to the dynamics
of the game, containing only a door and a poster with the word
“hello”, which is the password. Upon instinctively reading the
word aloud, the player is teleported to the next room.

Puzzle 2: The second room contains a poster with the password
“face”. The player spawns facing the opposite wall of the
poster; thus, we accustom the player to turn and explore the
virtual environment to find the password and reinforce finding
and speaking the password aloud.

Puzzle 3: Similarly, a poster depicts a captcha with the word
“velvet.”

Puzzle 4: The room contains several tables with monitors,
on whose screens are letters spelling “church” appropriately
ordered from left to right.
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Puzzle 5: This room tests for color blindness. Similarly to
puzzle 4, monitors display letters on Ishihara color test plates.
Without colorblindness, the player would read “daisy”; with
colorblindness, the player would read “as” instead. Each of
these passwords unlocks the room.

Puzzle 6: There is a button on a table; upon pressing it
three times, the three balloons next to the opposite wall pop
sequentially, revealing the password “red”.

Puzzle 7: The puzzle tests the short-term memory of the
participants (MoCA memory). A whiteboard displays seven
rows arranged vertically, each with fill-in blanks. The first two
rows contain the already filled-in words “VR” and “hello”,
respectively. The last five rows correspond to the previous
passwords from puzzles 2 to 6. Connecting the highlighted
letters sequentially from up to bottom, the participant reveals
the password “recluse”.

Puzzle 8: To measure wingspan, we depict on a wall four
human stick figures with different poses. The participant must
mimic the poses on the wall to uncover the four letters of
the password “cave”. One of the poses is a T-pose, which
facilitates wingspan measurement.

Puzzle 9: The participant must mimic the sequence of poses
on the wall, a set of squats. For every squat, the participant un-
covers two letters of the password “motivation”. We correlate
the distance traveled during the squats to fitness.

Puzzle 10: The (noisy) room depicts on a wall a pigpen cipher
hiding the password “deafening”.

Puzzle 11: The player presses a button on a table in time with
a visual input, thereby revealing their reaction time.

Puzzle 12: The (noisy) room presents the password “finally”
on the ceiling, habituating the user to look also upwards.

Puzzle 13: The room depicts the word “apple” in Hindi, Man-
darin, French, Japanese, Russian, Spanish, Portuguese, and
Arabic. The direction of gaze of the player when speaking the
password reveals which language the participant recognizes.
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Puzzle 14: This (noisy) room presents the sentence “Every-
thing you can do, I can do meta” broken down vertically into
five rows. To the left of each row, there is a shape. The last
three shapes are the same (circles). To solve the puzzle, the
participant must read aloud the words next to the first instance
of the repeated shape “I can.”

Puzzle 15: Similarly to puzzle 14 and inspired by screen
refresh rate tests [7], we present a number of balloons moving
at different refresh rates. Depending on the refresh rate of the
VR device, users cannot distinguish between some balloons.

Puzzle 16: To deploy the “naming” MoCA task, the room
presents three whiteboards depicting three animals.

Puzzle 17: To measure an “attention” task from MoCA, we
present a serial seven subtraction starting at 100, the password
is the sequence of numbers that lead to the final answer: “65.”

Puzzle 18: This room contains puzzle 7, thereby measuring
delayed recall from the MoCA test.

Puzzle 19: This room pictographically recreates the MoCA
abstraction test.
Puzzle 20 (no image): To complete this audio-only room,
the participant must repeat aloud two recorded sentences after
listening to them once, thereby measuring one of the language
tests of the MoCA.

Puzzle 21: The (noisy) room depicts three pictures of a famous
physicist—“Albert Einstein” is the password.

Puzzle 22: The room presents calendar days on a whiteboard
with “Today?” as the header and without disclosing the year,
month, weekday, or date, which prompts the participant to
identify the date of the experiment, thereby measuring one
variable of the orientation task in MoCA.

Puzzle 23: We measure whether a participant can read the text
at a close distance. We write the sentence “The code is equal
to three times four” in four lines on the screen of a monitor,
each line becoming more diminutive than the above line.

Puzzle 24: Similarly, we measure whether a participant can
read the sentence “Life is better within the digital playground”
at a long distance.
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